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ON THE APPOXIMATE EIGENVECTORS OF QUASILINEAR OPERATORS

We study a convergence of finite-dimensional aproximate eigenvectors of quasi-linear operators in Hilbert
space.

1. The main results.

Let H be the real separable Hilbert space with a scalar product {-,-); u € H, S =
{u € H :|jul| =1}. Let B: H — H a nonlinear completely continuous operator (i.e., B is
continuous and its image is compact). For nonlinear equation B(u) = f the convergence of
Bubnov-Galerkin-Petrov projective method is investigated in works of M.A.Krasnoselskii and
G.M.Vainikko (see the reference in [1]). At second, by variational Rayleigh-Ritz method the
finite-dimensional approximations of eigenvectors of a linear self-adjoint compact operator
A are investigated [1]. I.e. approximate solutions (A, u) of problem

Au=Xu, ue S, XeR. (1)

are investigated. Finally, L.A.Lusternik and L.G.Shnirelman employed the finite-dimensional
approximations for the investigation of eigenvectors of non-linear completely continuous
potential operators [2]. Thus they investigated the problem

Bu=Au, ue S, AeR, (2)

where B is completely continuous potential operator. However we do not know works corres-
ponding to research of approximate eigenvectors of nonlinear non-potential operators. Appa-
rently, the reason is that the method to distinguish eigenvalues by their numbers (as this
happens to be in linear and variational theories) is absent.

Here we consider the special class of completely continuous operators. Let L(H) be the
Banach space of linear self-adjoint compact operators. Let a mapping A : S — L(H) be
completely continuous, i. e., A is continuous mapping and its image I'm(A) is compact in
L(H). Next assertion is true.

LEMMA 1. ([3, p. 605]). The mapping B : H — H, where B(u) := A(u)u is completely
continuous.

The mapping B(u) := A(u)u is called quasilinear.

We shall need the vector space CC' = CC(S, L(H)) of all completely continuous mappings
A:S — L(H). The space CC is Banach space supplied with the norm ||A||c = sup,c¢ ||A(u)|

[4].

Consider the quasilinear eigenvector problem

Alwpu=Iu, ueS, A€R, A>0. (3)

By Lemma 1, problem (3) is analogous to problem (2). Note that problem (3) is the
generalization of linear self-adjoint eigenvector problem (1); for linear problem (1) the mapping
A(u) = const = A € L(H) is constant.

The pair (A*, u*) is called the solution if it satifaies problem (3). At the same time with
nonlinear problem (3) consider associated linear self-adjoint eigenvector problem (1) where

A = A(w*) € L(H). (4)
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Obviously, A* is an eigenvalue of associated linear problem (1), (4) and among eigenvectors
corresponding to A* the vector u* is present. Thus every solution of nonlinear problem (3)
is the solution of associated linear problem (1), (4).

DEFINITION 1. A solution (\*,u*) of problem (3) and its elements are called simple or m-
multiple if \* is simple or multiple respectively as eigenvalue of linear problem (1), (4).

We order all the positive eigenvalues of linear operator (4) in decreasing order, counting
multiplicity. The eigenvalue A* receives some number (or finitely many numbers)

DEFINITION 2. We assign the same number (numbers) to the solution (\*,u*) of problem
(3) and its elements.

We note that the pair (A\*, u*) itself does not contain an information about number and
multiplicity. It receives these characteristics as a solution of concrete linear problem (1), (4).

In order to investigate the quasilinear eigenvalue problem, we shall need some geometrical
objects:

1) the subset of pairs

P:={p=(A,u) € L(H) x S : there exists A > 0, such that Au = \u},
2) the mapping "graph A"
GrA:S — L(H) x S, GrA(u):= (A(u),u).

We know |[3] that the subset P is C*°-submanifold.

DEFINITION 3. Let the mapping A is smooth. Let (A\*,u*) is a simple solution of quasilinear
problem (8). The solution (A\*,u*) is called stable if the mapping GrA is transverse to the
manifold P at the point u*.

Let {e;}2°, be some orthonormal basis in H. By v*) denote the orthoprojective operator
onto the subspace R¥, which is generated by the basic vectors ey, ...e,. Let S¥1 = §n
R*. Together with infinite-dimensional problem (3) let us consider the approximate finite-
dimensional (k-dimensional) problem

(P ANy = du, A >0, ue S (3k)

In matrix natation problem (3) is the following form

an(u) ap(u) ... ap(u) apgq(u) .. Uy Uy
agi(u) agp(u) .. ag(u) ageyr(u) ... U2 U2

gl (5)
ap(u) apa(u) ... apr(u) agrar(u) ... U, o

In order to obtain k-dimensional problem (3, k) it is necessary in problem (5) to keep the

quadratic matrix that its size is equal to k and the k-dimensional vector (uy,...,u). For

finite-dimensional problem (3,k) the notions of number and multiplicity remain unchanged.
Let us formulate the main statements.

THEOREM 1. For each stable solution (A*,u*) of problem (3) there is a sequence (A, ug)
(k — o0) of solutions of problems (3,k) that converges to (\*,u*) .
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THEOREM 2. Let (A, ux) (k — oc) be a sequence of solutions of problems (3,k) and there is
limg— oo ( Ak, uk) = (A*, u*), where \* > 0. Then the following assertions are true.

1) The pair (A*,u*) is the solution of problem (3).

2) There ezists the subsequence (Mg, ur;) C (A, ux) such that all elements have at least
one common number. The gquantity of the common numbers is finite. The solution (A\*,u*)
has of all common numbers.

Due to quasilinear form of problems (3) and (3.k), we may distinguish the solutions with
the common number and to obtain the limit solution of problem (3) with same number.

THEOREM 3. Let each operator A € Im(A) C L(H) has a positive eigenvalue with number
n. Let (Ag, ug) (k — 00) be a sequence of solutions of problems (3,k) such that all of solutions
have the common number n. Then the following assertions are true.

1) This sequence has at least one limit point.

2) Each of limit point is a solution of problem (3) having the number n.

REMARK 1. Theorems 1 and 2 are analogous to assertions of Theorem 18.1 (see [1, p. 258])
about convergence of approximate eigenvalues for linear problem.

REMARK 2. For linear eigenvalue problem first it prove a convergence of sequence of eigen-
values, after which it prove a convergence of sequence of eigenvectors. For nonlinear problem
we consider the pair (eigenvalue, eigenvector) at the same time.

2. The proofs.

A mapping A is called image-k-dimensional (image-finite-dimensional) if for u € S the
following condition is true: A(u) = v® A(u)r®, i. e.,

A®Y(y) 0
where A®)(u) = ((A(u)es e;)) (i,5 = 1,...,k) is a symmetric k-dimensional matrix. By
A () .= VB A(u)v®) (u € S, k =0,1,...) we denote the image-k-dimensional approzi-

mation of an arbitrary mapping A.
LEMMA 2. (3, p. 612] ).
In the space CC' image-finite-dimensional mappings of form (6) are dense. For any

choice of an orthnormal basis {e;}32, the convergence of image-k-dimensional approzimation
takes place: A%} 5 4 in CC as k — oc.

LEMMA 3. The stable solution is isolated and smoothly depends on a small perturbation of
the mapping A.

Proof is by implicit mapping theorem.

By T'S denote the tangential bundle over S. Using the condition of normalization u € S,
we exclude the eigenvalue from equation (3) and obtain the equation with an unknown u € S
only and with the functional parameter 4 € CC:

=(u, A) =0, where £: S x CC(S,L(H)) = TS, Z(u,A) = A(u)u — {A(u)u, u)u.

The mapping = is the section of the tangential bundle T'S depending on the functional
parameter A € CC. Let ug be the eigenvector; in another way, ug is the singular point of
the section =. The operator of partial derivative is

D1E(to, 4) : TupS = Tiuo0)(TS),
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D ZE(A, uo)(Au) = A(ug)Au — (A(u)u, u)Au+
(DA(up)Au)ug — {(DA(up) Au)ug, ug)ue — 2{A(ug)ug, Au)uy.

Since wug is the eigenvector and the tangential space T,,S is orthogonal to wg, we have
(A(ug)ug, Au) = 0. Thus, the operator D;=(A, up) takes the tangential space to itself. By
the definitions of the manifold P and the stable eigenvector, we have that the operator
Dy=(A, wp) = Ty S — Ty S is a linear isomorphism. Consequently for the mapping = implicit
mapping theorem is applicable: there exists the local smooth mapping u = wu(A). This
completes the proof. O

Proof of Theorem 1 is by lemmas 2, 3. [J

Proof of Theorem 2 is by Lemma 2 and Definition 2. [J

By A,(A) denote the set of all eigenvalues of problem (3) that have number n, and by
Un(A) denote the set of all eigenvectors of problem (3) that have number n. We need the
lemma about a priori estimate.

LEMMA 4. Let a subset T C CC be a compact subspace. Let each operator A € U erIm(A) C
L(H) has a positive eigenvalue with number n. Then:
1) the following lower and upper estimates take place

inf A,(A), An(4 :
0<{142T (A), ilé];f\_(—l)<oo_

2) the subset UacrUyn(A) C S is a compact subspace.

Proof. The assertion is a direct consequence of the continuous dependence of eigenvalues
under perturbations of operators A € L(H) and the compactness of images of these operators.
O

Proof. of Theorem 3 is by Lemma 4, Definition 2 and Theorem 2. [J

3. The quasilinear eigenfunctions problem.

Let Q ¢ R™ be a bounded domain with a C?-smooth bound 99, z € Q; Wi(Q) the
Hilbert separable space (the Sobolev space) of functions with distributional derivatives up
through order ¢, which are 2-integrable (we recall that W3 (Q) = Ly(Q2) = H is the space of
functions, which are 2-integrable). Let 0 < {; < (, be fixed numbers. Let L : W2 — L, be
an elliptic self-adjoint operator:

= 0 Ay
Ly=- Z 3—%(%‘1(&")6—%

i,j=1

) + a(z)y,

where a € C°(Q), a;; = a;; € C*(Q) and elliptic conditions

GIEP < aij(@)&& < QP €= (b1, nm), P =&+ ..+ &

are fulfilled on Q. Consider following quasilinear Dirichlet problem: find an eigenfunction
y € W2(Q) and an eigenvalue A € R of

Ly +p(y, Vy,2)y = vy, ylaa =0, nyer =5 (7)

ot
by ]



Ya.M. Dymarskii

The pair (v, y) that satisfies the problem (7) is called the solution. Let a function p(a, b, x)
be continuous on the domain R x R™ x Q and following lower and upper estimates take
place:

0<o<plabzr)<I (8)

where o, % are some constants.

For solutions of problem (7) the definitions 1 and 2 remain true.

We shall shown that problem (7) may be investigated by a sequence of problems of the
form (3,k) in the space H = Ly(Q).

At first, we shall formulate the lemma about @ priori estimates. Introduce following
notations: ®(c, L) is the set of continuous functions that satisfy estimates (8); {(X, u)}7 is
the set of solutions of problem (7), which have the number n; {(A u)}3 = Upca{(A, u)}],
where & = ®(0, X).

LEMMA 5. ([5, 6].) For any fized n the set {(\,u)}} is bounded in the space R x W2(Q)
and in the space R x C'(Q) by some constant T = T(n, ®).

Let {y;}2, be the system of orthonormal eigenfunctions of the linear operator L under
Dirichlet condition. Denote by Pr; the operator of the orthogonal projection

l

Pr(y)=>_ (fﬂ yyfdx) Yi-

=1

At the same time with problem (7) let us consider the sequence of auxiliary boundary
problems:

Ly T p(PTE(y)a V(P?ﬂl(‘y))a x)y = ylan — 0: / yzdx = 1? (7? f)
Q
el == 0., Lo

REMARK 3. For solutions of the problem (7, 1) the definitions 1, 2 and (if | is sufficiently
large) the assertions of Lemma 5 remain true.

Reduce each of problems (7, 1) to the problem of the form (3). Consider the next
mappings.

1) Denote by C9(92) C C°(Q) the open set of positive continuous functions. Consider
the completely continuous mapping

b H—CLUQ), Dily) =p(Pri(y), VPr(y), ),

which generated by the I-dimensional projection operator and the function p.

2) Denote by L(WZ()), H) the Banach space of continuous linear operators and by
Lis(W2(Q),H) C L(W2(R2), H) the open subset of linear isomorphisms. Consider the smooth
mapping

D: CYU@) — Liy(WA(Q), H), D(q)=L+g,

which takes a function ¢ to the continuous positive linear differential operator (positivity
means that for any y € H the inequality [,,[D(q)y(z)]y(z)dz > 0 is true.)
3) Consider the smooth mapping

inv : Lig(WZ(Q), H) — Li;(H,W2(Q)), inv(F)=F~1,
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which takes a continuous linear isomorphism F' to the inverse isomorphism.

4) Denote by j : W}(Q) — H the imbedding operator. The operator j is Hilbert-
Schmidt one [7]. Consider the continuous linear operator i that takes each linear isomorphism
C e Li;(H,W£(Q)) to the linear Hilbert-Schmidt operator by h(C) = jC.

Now, consider the mapping product 4, = h-inv-D -p; : H — L. By the complete
continuity of py, the mapping A, is completely continuous. By the positivity of D(g). for any
y € H the operator A,(y) is positive; in particularly, one is self-adjoint. Thus, 4, € CC.
From the given in this item definitions of the space H and the mapping A, it follows that
problem (7, 1) is identified to problem (3), where A = 4; and A = 1/7.

By k(l) (I = oo) denote a sequence of numbers k € Z such that k(l) — oc as [ — oc.
Let (3, k(1)) be the problem (3, k), where A = 4; and A = 1/~. Using Remark 3, we obtain
that for solutions of problems (7) and (3, k(1)) the assertions of theorems 2, 3 remain true in
the space H = Lo(92). Since inv - D - pi(y) € WZ(Q), the assertions of theorems 2, 3 remain
true in the space W2(9).
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